Cryogenic and magnet design for the Princeton aXion Search

Joëlle-Marie Bégin

The Princeton aXion Search (PXS)

- 0.4 m³ cavity immersed in a ~0.8 m bore, 5 T conductively cooled magnet.
- Travelling wave parametric amplifier (TWPA) readout.
- Cavity and first stage amplifiers cooled to 40mK with dilution refrigerator.
- Magnet cooled to 4K with two PT420 pulse tube cryocoolers.

The Princeton aXion Search (PXS)

- 0.4 m³ cavity immersed in a ~0.8 m bore, 5 T conductively cooled magnet.
- Travelling wave parametric amplifier (TWPA) readout.
- Cavity and first stage amplifiers cooled to 40mK with dilution refrigerator.
- Magnet cooled to 4K with two PT420 pulse tube cryocoolers.

Full scale cavity prototype

Nate Otto

The PXS magnet

- ~0.8 m bore
- ~1 m height
- 6MJ, 5 T, field profile on right
- Conductively cooled by two PT420 cryocoolers

Magnet development in collaboration with the Princeton Plasma Physics Laboratory.

Yuhu Zhai Griffin Bradford Siwei Chen

4

Field strength

PXS model coil and test cryostat

- 5 T coil about ~1/3 scale of full size coil
- Nb3SN cooled to 4K
- Coil protype is currently under construction, first cooldowns this summer

Delivering 600 amps to 4 K

Cryogenic performance of current leads at 600 A

2.9 K on PT 4K stage ~0.5 W total heat load

This current lead design will be used for the full scale PXS coil

Conclusions

- PXS cryostat out for bid
- ½ scale Nb₃Sn model coil operating Summer 2025
- Full scale coil 2027
- More from Nate and Joe on cavity and readout!

Thank you!

PXS is funded by the Simons Foundation

Saptarshi Chaudhuri Lyman Page Roman Kolevatov Joe Wiedemann Nate Otto

Griffin Bradford Yuhu Zhai Siwei Chen

Jonas Zmuidzinas

Backup slides

Parallel development of subsystems Resonator and readout Magnet

Conduction cooled Nb₃Sn magnets are the future

- Magnets are everywhere
 - Particle accelerators, fusion, medical physics, NMR, axions, etc
- Wet magnets (immersed in liquid helium)
 vs conduction cooled magnets
 - Benefit of conduction cooled: no liquid helium (\$\$). Safety (vaporized LHe goes boom).
- Nb3Sn can operate under much higher critical currents than NbTi, in principle being able to support fields up to 18T

Credit: Ian Pong, Arno Godeke

PXS model coil and test cryostat

300K connection

300K-40K leads

4K HTS connection

